
Introduction to
GPU Computing

and CUDA

Chik Him (Ricky)
Wong

GraCCA

AMReX

Lattice QCD

Parton Shower
Simulations

Neural Network

Neural Network
Applications

Conclusion

Introduction to
GPU Computing and CUDA

Chik Him (Ricky) Wong

University of Wuppertal

August 29, 2024

1 / 45

Introduction to
GPU Computing

and CUDA

Chik Him (Ricky)
Wong

GraCCA

AMReX

Lattice QCD

Parton Shower
Simulations

Neural Network

Neural Network
Applications

Conclusion

OutlineOutline

Part 1: GPU computing
What is GPU?
GPU Architecture
CUDA basics
Performance and Optimization

Part 2: GPU Applications in HEP Research
Nuclear Astrophysics:

GraCCA: GPU-accelerated N-body simulations
AMReX : framework for AMR

Nuclear Physics:
Lattice QCD
Parton Shower calculation

Neural Network applications

2 / 45

Introduction to
GPU Computing

and CUDA

Chik Him (Ricky)
Wong

GraCCA

AMReX

Lattice QCD

Parton Shower
Simulations

Neural Network

Neural Network
Applications

Conclusion

GraCCAGraCCA
Hsi-Yu Schive et al, 2007 NewAstron.13:418-435,2008 [arXiv:0707.2991]

GraCCA (Graphic-Card Cluster for Astrophysics) is a specialized
computing system designed for astrophysical simulations
Gravity is long-ranged interaction
⇒ N-body Simulation involves N2 interaction calculations
Hybrid model:

GPU : the acceleration and jerk on i-particles exerted by j-particles
CPU : for other tasks

3 / 45

Introduction to
GPU Computing

and CUDA

Chik Him (Ricky)
Wong

GraCCA

AMReX

Lattice QCD

Parton Shower
Simulations

Neural Network

Neural Network
Applications

Conclusion

GraCCAGraCCA

4 / 45

Introduction to
GPU Computing

and CUDA

Chik Him (Ricky)
Wong

GraCCA

AMReX

Lattice QCD

Parton Shower
Simulations

Neural Network

Neural Network
Applications

Conclusion

AMReXAMReX

W. Zhang et al, 2020, 2009.12009v1

https://drive.google.com/file/d/1-Fn6peoPj6zRc-iV-j1_Zc3YHoKZM2C9/view?usp=sharing

Adaptive Mesh Refinement (AMR): Dynamically adjusts the
resolution of the computational grid during a simulation, focusing
computational resources on areas that require higher precision
while using a coarser grid in regions of less interest

5 / 45

Introduction to
GPU Computing

and CUDA

Chik Him (Ricky)
Wong

GraCCA

AMReX

Lattice QCD

Parton Shower
Simulations

Neural Network

Neural Network
Applications

Conclusion

AMReXAMReX

AMReX is a publicly available software framework designed for
building massively parallel block-structured AMR applications

MAESTROeX: Used for low Mach number astrophysics simulations
SedonaEX: Calculates radiation signatures of supernovae and other
transient astrophysical phenomena
Emu: Focuses on neutrino quantum kinetics

6 / 45

Introduction to
GPU Computing

and CUDA

Chik Him (Ricky)
Wong

GraCCA

AMReX

Lattice QCD

Parton Shower
Simulations

Neural Network

Neural Network
Applications

Conclusion

AMReXAMReX

C++ and Fortran interfaces
1-, 2- and 3-D support
Parallelization via flat MPI, OpenMP, hybrid MPI/OpenMP, hybrid
MPI/(CUDA or HIP or SYCL), or MPI/MPI

7 / 45

Introduction to
GPU Computing

and CUDA

Chik Him (Ricky)
Wong

GraCCA

AMReX

Lattice QCD

Parton Shower
Simulations

Neural Network

Neural Network
Applications

Conclusion

AMReXAMReX
Each resolution level contains an array of “boxes”(domains) and
keep track of the interations within and among them
⇒ Main Task: Loop over these boxes and across levels
Highly parallelizable ⇒ Speed up by GPU

CPU(OpenMP) ⇒ GPU

8 / 45

Introduction to
GPU Computing

and CUDA

Chik Him (Ricky)
Wong

GraCCA

AMReX

Lattice QCD

Parton Shower
Simulations

Neural Network

Neural Network
Applications

Conclusion

AMReXAMReX
https://amrex-combustion.github.io/PeleLMeX/manual/html/Performances.html

There is significant speed up by GPU:

WarpX

GPU

CPU

PeleLMeX

9 / 45

Introduction to
GPU Computing

and CUDA

Chik Him (Ricky)
Wong

GraCCA

AMReX

Lattice QCD

Parton Shower
Simulations

Neural Network

Neural Network
Applications

Conclusion

Lattice QCDLattice QCD
https://userweb.jlab.org/ edwards/talks/edwards_lqcd_scidac_19.pdf

Many important properties of QCD, e.g. Hadron Spectroscopy,
ΛQCD etc, involve computations at IR scales where perturbation is
not applicable ⇒ Non-perturbative methods are required
Lattice QCD :
First-principle computation of QCD on discretized finite-volume
spacetime grids, then take continuum + infinite-volume limit

10 / 45

Introduction to
GPU Computing

and CUDA

Chik Him (Ricky)
Wong

GraCCA

AMReX

Lattice QCD

Parton Shower
Simulations

Neural Network

Neural Network
Applications

Conclusion

Lattice QCDLattice QCD

gµ −2 calculation
A. S. Kronfeld et al, 2207.07641v1

QCD phase diagram
H.-T. Ding et al. https://doi.org/10.1007/978-981-19-4441-3_1

(2022)

Hadron Spectroscopy
M. Battaglieri, Acta Phys.Polon. B46 (2015) 2, 257

ΛQCD calculation
Y. Aoki et al, Eur.Phys.J.C 82 (2022) 10, 869

0.6 0.7 0.8 0.9

=
=

=
=

El-Khadra 92
UKQCD 92
Bali 92
Luscher 93
Alles 96
ALPHA 98
Boucaud 98A
Boucaud 98B
Becirevic 99B
Boucaud 00A
Boucaud 01A
Soto 01
QCDSF/UKQCD 05
Boucaud 05
Boucaud 08
Brambilla 10
Sternbeck 10
Kitazawa 16
Ishikawa 17
Husung 17
Dalla Brida 19
FLAG estimate for =

Boucaud 01B
ALPHA 04
QCDSF/UKQCD 05
JLQCD/TWQCD 08C
ETM 10F
Sternbeck 10
ETM 11C
ALPHA 12
Karbstein 14
Karbstein 18
FLAG estimate for =

HPQCD 05A
HPQCD 08A
HPQCD 08B
Maltman 08
PACS-CS 09
HPQCD 10
HPQCD 10
JLQCD 10
Bazavov 12
Bazavov 14
JLQCD 16
Maezawa 16
ALPHA 17
Nakayama 18
Hudspith 18
Takaura 18
TUMQCD 19
Petreczky 19
Zafeiropoulos 19
Cali 20
Ayala 20
Boito 20
Petreczky 20
FLAG estimate for =

ETM 11D
ETM 12C
ETM 13D
HPQCD 14A
FLAG average for =

11 / 45

Introduction to
GPU Computing

and CUDA

Chik Him (Ricky)
Wong

GraCCA

AMReX

Lattice QCD

Parton Shower
Simulations

Neural Network

Neural Network
Applications

Conclusion

Lattice QCDLattice QCD

Wick rotation: t →−iτ
Partition function with action SM rotated into Eucledian spacetime
is mathematically equivalent to that of a Classical Statistical
Mechanical system with Hamiltonian SE

ZM =
∫
{φ}

eiSM/h̄ =
∫
{φ}

e
i
h̄
∫

LM({φ}x,t)d3xdt

→ ZE =
∫
{φ}

e−βSE =
∫
{φ}

e−β
∫

LE({φ},x,τ)d3xdτ

If SE is real:
Monte Carlo Integration over the fields is applicable
⇒ Simulation is viable

If not, it is known as sign problem. Some tricks can be used to
make it work to some extent (e.g. reweighting)
If boson/fermion has periodic/antiperiodic temporal boundary
conditions, the temporal lattice size corresponds to inverse
temperature

12 / 45

Introduction to
GPU Computing

and CUDA

Chik Him (Ricky)
Wong

GraCCA

AMReX

Lattice QCD

Parton Shower
Simulations

Neural Network

Neural Network
Applications

Conclusion

Lattice QCDLattice QCD
Discretization of QCD action involves a change of variables:

Gauge field: Link variables (SU(3) matrices)
Aµ (x, t)→ Uµ (x,τ)
Quark field: pseudo fermion fields (not Grassmann)
ψ(x, t)→ ψ(x,τ)
Inverse propagator: Dirac operator
ψ̄(iγµ Dµ (A)−m)ψ → ψ̄(x1,τ1)D(U;x1,τ1;x0,τ0)ψ(x0,τ0)

All Grassmann degrees of freedom are integrated out into Dirac
operator, and all observables are only in terms of U and Dirac
operator
⇒ A suitable distribution (e−βSE) of gauge fields (configurations
) fully captures all physics required

Y. Bi et al, EPJ Web of Conferences 245, 09008 (2020)

13 / 45

Introduction to
GPU Computing

and CUDA

Chik Him (Ricky)
Wong

GraCCA

AMReX

Lattice QCD

Parton Shower
Simulations

Neural Network

Neural Network
Applications

Conclusion

Lattice QCDLattice QCD

Ensembles of gauge fields are generated by Hybrid Monte Carlo
algorithm
Molecular Dynamics Evolution: Equation of motion of a fictitious
fluid with Hamiltonian defined as SE, evolving U along a fictitious
time tMD

dU
dtMD

= P,
dP

dtMD
=−∂SE

∂U

An initial random (or thermalized) gauge field is evolved according
to Molecular Dynamics Evolution at discretized tMD

The Hamiltonian (SE) is approximately conserved, but fluctuates
due to discretization of tMD (on purpose)
At each MD step, accept the change with probability based on the
change in SE (a Metropolis accept-reject test)
The result is a Markov-Chain of U with the desired distribution

14 / 45

Introduction to
GPU Computing

and CUDA

Chik Him (Ricky)
Wong

GraCCA

AMReX

Lattice QCD

Parton Shower
Simulations

Neural Network

Neural Network
Applications

Conclusion

Lattice QCDLattice QCD

Typical scenario:
lattice size: 483 ×96 ⇒ Operator size: 107 ×107

Link variables: 3×3 matrix , per direction per site ≈ 108 entries ⇒
≈ GB per configuration
O(103) configurations needed

Dirac operator inversion is very computational intensive
Action on lattice cannot preserve all continuum symmetries
⇒ A denser grid or more sophisticated discretization is needed
QCD is distorted by being trapped in a box
⇒ A larger box is needed
Sign problem, Overlap problem, Frozen Topology
⇒ Better algorithms or more computational power are needed
⇒ Bad News:
Computation is overwhelmingly intensive
Good News:
The Lattice formalism makes it very parallelizable

15 / 45

Introduction to
GPU Computing

and CUDA

Chik Him (Ricky)
Wong

GraCCA

AMReX

Lattice QCD

Parton Shower
Simulations

Neural Network

Neural Network
Applications

Conclusion

Lattice QCDLattice QCD

The most computational expensive part is the Dirac matrix, in
which typical terms read

Uaa′
µ (x)ψα,a′(x+ µ̂) , Uaa′†

µ (x− µ̂)ψα,a′(x− µ̂)

The discretized QCD action is (usually) local
⇒ Sparse matrix that only involves neighboring sites
The lattice can be naturally divided into local sublattices, whose
interactions are only via boundary surfaces
⇒ parallelization per sublattice
Computation of each site can be independently done given that the
data at neighboring sites
⇒ parallelization per site

16 / 45

Introduction to
GPU Computing

and CUDA

Chik Him (Ricky)
Wong

GraCCA

AMReX

Lattice QCD

Parton Shower
Simulations

Neural Network

Neural Network
Applications

Conclusion

Lattice QCDLattice QCD

Parallelization highly applicable ⇒ GPU can accelerate
Many different GPU codes are developed:

QUDA (USQCD):
A comprehensive CUDA library dedicated to Lattice QCD
OpenQCD (CERN):
Focus on open boundary conditions and Huge lattice sizes
HiRep (U of Southern Denmark):
Focus on simulation with fermions in higher representations and
variable number of colors, in the context of BSM studies
Janko (U of Wuppertal):
Focus on thermodynamics studies

17 / 45

Introduction to
GPU Computing

and CUDA

Chik Him (Ricky)
Wong

GraCCA

AMReX

Lattice QCD

Parton Shower
Simulations

Neural Network

Neural Network
Applications

Conclusion

Parton Shower SimulationsParton Shower Simulations
S. Höche, 1411.4085v2

Event generators that simulate the hard interation between partons
and soft interactions between hadrons is crucial in the
understanding of the detected events in the colliders
The evolution between the scales utilizes parton shower and
hadronization models, and accurate simulation is essential
Parton shower models the splitting of partons’ energy and momenta
into more partons and at lower scales in consecutive branching,
while hadronization model combines the final state partons into
hadrons
Many simulated events are required to reduce the simulation
uncertainty and allow exotic (very rare) events to be simulated.
⇒ Such calculations, done by the so-called Monte Carlo Event
Generators, is computationally expensive
The ATLAS Detector’s HL-LHC Roadmap document:

Event generators form around 14% of CPU usage
Conservative CPU usage cannot maintain a sustainable budget

⇒ GPU acceleration is needed
18 / 45

Introduction to
GPU Computing

and CUDA

Chik Him (Ricky)
Wong

GraCCA

AMReX

Lattice QCD

Parton Shower
Simulations

Neural Network

Neural Network
Applications

Conclusion

Sudakov Veto AlgorithmSudakov Veto Algorithm
M. H. Seymour, 2024, 2403.08692v1

An algorithm used for parton shower calculation
Each branching of a parton ĩj to partons i and j is characterized by a
set of values (t,z,φ)

t: scale of momentum transfer
z: defines how energy is splitted between the children
φ : Azimuthal angle of the branching

Task: Generate a distribution of (t,z,φ) such that the probability of
the branching is dictated by known physics
Sudakov form factor: the probability that no emissions occur
between the initial scale of the system T and a smaller scale t

∆(t0, t1) = exp
[
−
∫ T

t
dt′

(
1
t′

∫ z+

z−
dz

αs(p2
⊥(t

′,z))
2π

P(z)
)]

The probability to branch at scale t with evolution starting at T is
then given by Poisson statistics P = d∆/d ln t
It is not trivial to compute and invert the term within the integral →
some modifications are needed to generate such distribution by
Monte Carlo
The resulting algorithm is known as Veto algorithm

19 / 45

Introduction to
GPU Computing

and CUDA

Chik Him (Ricky)
Wong

GraCCA

AMReX

Lattice QCD

Parton Shower
Simulations

Neural Network

Neural Network
Applications

Conclusion

Sudakov Veto AlgorithmSudakov Veto Algorithm

Propose new (t,z,φ) from a wrong distribution, which can be
analytically inverted
Among all possible branchings considered, select a “Winner” who
proposes the highest new t

Accept the Winner with probability dictated by the ratio between
correct and wrong distribution
If accepted, generate the corresponding partons and go to the next
iteration
If rejected, replace t0 with t1 and propose new set of (t,z,φ)
If t < tC for some cutoff scale allowed, set t back to t0

20 / 45

Introduction to
GPU Computing

and CUDA

Chik Him (Ricky)
Wong

GraCCA

AMReX

Lattice QCD

Parton Shower
Simulations

Neural Network

Neural Network
Applications

Conclusion

Sudakov Veto AlgorithmSudakov Veto Algorithm

This algorithm can be parallelized on GPU
Threads could execute different commands independently, hence
the effect of unpredictable termination of each event is not
significant

21 / 45

Introduction to
GPU Computing

and CUDA

Chik Him (Ricky)
Wong

GraCCA

AMReX

Lattice QCD

Parton Shower
Simulations

Neural Network

Neural Network
Applications

Conclusion

Sudakov Veto AlgorithmSudakov Veto Algorithm

There is significant speed up by GPU:

22 / 45

Introduction to
GPU Computing

and CUDA

Chik Him (Ricky)
Wong

GraCCA

AMReX

Lattice QCD

Parton Shower
Simulations

Neural Network

Neural Network
Applications

Conclusion

Machine Learning and Neural NetworkMachine Learning and Neural Network

Artificial Intelligence:
Machines carry out tasks in an
intelligent way
Machine Learning:
Machines learn via data to
acquire intelligence
Neural Network:
A type of Machine Learning
mimicking biological neural
networks
Deep Learning:
Many-layered Neural
Networks are used

23 / 45

Introduction to
GPU Computing

and CUDA

Chik Him (Ricky)
Wong

GraCCA

AMReX

Lattice QCD

Parton Shower
Simulations

Neural Network

Neural Network
Applications

Conclusion

Machine Learning and Neural NetworkMachine Learning and Neural Network
Input Ansatz Parameters Fitting Inter/Extra-polation

{x = 0,y = 1},{x = 1,y = 0.5} . . . y = F(x) = a+bx a, b min(χ2) y = F(x = 0.13) = 3.14(2)

Training data Model architecture Weights / Bias Training Inference
Label = F[f0, f1 . . .](Img) W , B min(L) ”Dog“ (92% likely)

Goal of Machine learning:
To infer a mapping between input parameters and outputs to make
predictions (a.k.a. Fitting data with a function)
“Model” of a Neural Network:
a fitting function with Overwhelmingly Large Number of
Parameters.
This distinguishes Neural Network from ordinary curve fittings
Application in wide range of domains:
Most functions in reality can be approximated by sufficiently large
number of parameters
⇒ Most systems can be fitted given enough data

24 / 45

Introduction to
GPU Computing

and CUDA

Chik Him (Ricky)
Wong

GraCCA

AMReX

Lattice QCD

Parton Shower
Simulations

Neural Network

Neural Network
Applications

Conclusion

Machine Learning and Neural NetworkMachine Learning and Neural Network

Input Ansatz Parameters Fitting Inter/Extra-polation
{x = 0,y = 1},{x = 1,y = 0.5} . . . y = F(x) = a+bx a, b min(χ2) y = F(x = 0.13) = 3.14(2)

Training data Model architecture Weights / Bias Training Inference
Label = F[f0, f1 . . .](Img) W , B min(L) ”Dog“ (92% likely)

“Neural Network”: a Model implicitly defined by an arrangement
of connections of smaller components “Neurons” . “Neurons” are
simplified sigmoid-like mathmatical functions with adjustable
parameters (weights and bias), briefly resembling biological neural
networks.
“Train a model” : Adjust (fit) the parameters with existing input
data or from feedback loops

25 / 45

Introduction to
GPU Computing

and CUDA

Chik Him (Ricky)
Wong

GraCCA

AMReX

Lattice QCD

Parton Shower
Simulations

Neural Network

Neural Network
Applications

Conclusion

Machine Learning and Neural NetworkMachine Learning and Neural Network
Input Ansatz Parameters Fitting Inter/Extra-polation

{x = 0,y = 1},{x = 1,y = 0.5} . . . y = F(x) = a+bx a, b min(χ2) y = F(x = 0.13) = 3.14(2)

Training data Model architecture Weights / Bias Training Inference
Label = F[f0, f1 . . .](Img) W , B min(L) ”Dog“ (92% likely)

Loss function:
Defines the difference between predicted and actual outputs to be
minimized, e.g.

Regression: Mean Squared Error (MSE)
L = χ2 = 1

n ∑
n
i=1(yi − ydata

i)2

Catagorization: Cross Entropy
L =−∑x p(x) lnq(x)
Generative: Relative Entropy (Kullback-Leibler Divergence)
L = ∑x p(x) ln(p(x)/q(x))

Usually combined with a term proportional to absolute sum (L1) or
squared sum (L2) of the weights as regularization to prevent
overfitting

26 / 45

Introduction to
GPU Computing

and CUDA

Chik Him (Ricky)
Wong

GraCCA

AMReX

Lattice QCD

Parton Shower
Simulations

Neural Network

Neural Network
Applications

Conclusion

Training (Back Propagation) in
Neural Networks

Training (Back Propagation) in
Neural Networks

Loss function:
Defines the difference between predicted and actual outputs to be
minimized
Forward propagation: Computation of Loss function
Back-Propagation:
Updates the weights and biases according to corresponding
gradients of the loss function, i.e. Gradient Descent method

wij → wij −α · ∂L
∂wij

,
∂L

∂wij
=

∂L
∂ fj

·
∂ fj
∂ zj

·
∂ zj

∂wij

bj → bj −β · ∂L
∂bj

,
∂L
∂bj

=
∂L
∂ fj

·
∂ fj
∂bj

α , β : learning rates
fj: Activation function of neuron j:
nonlinear function mapping input with output using wij and bj
zj: weighted sum of inputs to neuron j

27 / 45

Introduction to
GPU Computing

and CUDA

Chik Him (Ricky)
Wong

GraCCA

AMReX

Lattice QCD

Parton Shower
Simulations

Neural Network

Neural Network
Applications

Conclusion

Parallelisms in Neural NetworksParallelisms in Neural Networks

“With great number of parameters comes great ... ”:
Demand of Data : To avoid overfitting
Demand of Computational Power : For Training and Inference

⇒ Parallelism is crucially needed
Training:

Data Parallelism:
Trained on seperate datasets and combined in occational full
back-propagation
Task Parallelism:
The model is broken down into different parts and trained
concurrently (Distributable models, Mixture of Experts)

Inference:
Data Parallelism:
Handle multiple requests concurrently
Task Parallelism:
Agents, Mixture of Experts

Both Parallelisms can be sped up by GPUs

28 / 45

Introduction to
GPU Computing

and CUDA

Chik Him (Ricky)
Wong

GraCCA

AMReX

Lattice QCD

Parton Shower
Simulations

Neural Network

Neural Network
Applications

Conclusion

Using Neural Networks in PythonUsing Neural Networks in Python

Python:
Popular language for machine learning and neural networks due to
Huge and ever growing number of related libraries.
Most relevant prerequites:

NumPy: Efficient numerical computations
Pandas: Data manipulation and analysis
Scikit-learn: Machine learning tools
Matplotlib/Seaborn: Data visualization

Available Deep learning frameworks:
TensorFlow/Keras: High-level APIs, production-ready
PyTorch: Dynamic computation graphs, research-friendly

These libraries are optimized in multi-GPU (and multi-CPU)
environment

29 / 45

Introduction to
GPU Computing

and CUDA

Chik Him (Ricky)
Wong

GraCCA

AMReX

Lattice QCD

Parton Shower
Simulations

Neural Network

Neural Network
Applications

Conclusion

Using Neural Networks in PythonUsing Neural Networks in Python
Components of a neural network:

Input layer
Hidden layer(s)
Output layer
Activation functions (e.g., ReLU, Sigmoid)

Steps:
1 Data preparation and preprocessing
2 Model definition
3 Training (forward and backward propagation)
4 Evaluation and prediction

30 / 45

Introduction to
GPU Computing

and CUDA

Chik Him (Ricky)
Wong

GraCCA

AMReX

Lattice QCD

Parton Shower
Simulations

Neural Network

Neural Network
Applications

Conclusion

Using Neural Networks in PythonUsing Neural Networks in Python

import numpy as np
import pandas as pd
from sqlalchemy import create_engine
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense

#Database connection
engine = create_engine(
’postgresql://username:password@localhost:5432/mydatabase’)
Read data from database
query = "SELECT feature1, feature2, ..., target FROM my_table"
df = pd.read_sql(query, engine)

#Prepare data
X = df.drop(’target’, axis=1).values
y = df[’target’].values
X_train, X_test, y_train, y_test =
train_test_split(X, y, test_size=0.2, random_state=42)

#Normalize features
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)

31 / 45

Introduction to
GPU Computing

and CUDA

Chik Him (Ricky)
Wong

GraCCA

AMReX

Lattice QCD

Parton Shower
Simulations

Neural Network

Neural Network
Applications

Conclusion

Using Neural Networks in PythonUsing Neural Networks in Python

#Define the model
model = Sequential([
Dense(64, activation=’relu’, input_shape=(X.shape,)),
Dense(32, activation=’relu’),
Dense(1, activation=’sigmoid’)
])

#Compile and train
model.compile(optimizer=’adam’, loss=’binary_crossentropy’,
metrics=[’accuracy’])
model.fit(X_train, y_train, epochs=10, batch_size=32,
validation_split=0.2)

#Evaluate
test_loss, test_accuracy = model.evaluate(X_test, y_test)
print(f"Test accuracy: {test_accuracy:.4f}")

#Make predictions
new_data =
pd.read_sql("SELECT feature1, feature2, ... FROM new_data_table", engine)
new_data_scaled = scaler.transform(new_data)
predictions = model.predict(new_data_scaled)

32 / 45

Introduction to
GPU Computing

and CUDA

Chik Him (Ricky)
Wong

GraCCA

AMReX

Lattice QCD

Parton Shower
Simulations

Neural Network

Neural Network
Applications

Conclusion

Using Neural Networks in PythonUsing Neural Networks in Python
import torch
import torch.nn as nn
import torch.optim as optim
from mpi4py import MPI
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler

Initialize MPI
comm = MPI.COMM_WORLD
rank = comm.Get_rank()
size = comm.Get_size()

#Set up CUDA
gpu_id = rank % torch.cuda.device_count()
device = torch.device(f"cuda:{gpu_id}")

#Get data
...
Convert to PyTorch tensors
data = torch.FloatTensor(X_train_scaled)
targets = torch.FloatTensor(y_train)

Divide data among MPI processes
data_size = len(data)
local_data_size = data_size // size

local_data = data[rank*local_data_size:(rank+1)*local_data_size
].to(device)

local_targets = targets[rank*local_data_size:(rank+1)*local_data_size
].to(device)

33 / 45

Introduction to
GPU Computing

and CUDA

Chik Him (Ricky)
Wong

GraCCA

AMReX

Lattice QCD

Parton Shower
Simulations

Neural Network

Neural Network
Applications

Conclusion

Using Neural Networks in PythonUsing Neural Networks in Python

Define a simple neural network
class SimpleNN(nn.Module):

def __init__(self):
super(SimpleNN, self).__init__()
self.fc1 = nn.Linear(10, 5)
self.fc2 = nn.Linear(5, 1)

def forward(self, x):
x = torch.relu(self.fc1(x))
x = self.fc2(x)
return x

Create model and move to GPU
model = SimpleNN().to(device)
Create optimizer
optimizer = optim.SGD(model.parameters(), lr=0.01)

34 / 45

Introduction to
GPU Computing

and CUDA

Chik Him (Ricky)
Wong

GraCCA

AMReX

Lattice QCD

Parton Shower
Simulations

Neural Network

Neural Network
Applications

Conclusion

Using Neural Networks in PythonUsing Neural Networks in Python

Training loop
for epoch in range(10):

Forward pass
outputs = model(local_data)
loss = nn.MSELoss()(outputs, local_targets)

Backward pass and optimize
optimizer.zero_grad()
loss.backward()
optimizer.step()

Aggregate gradients across all processes
for param in model.parameters():

comm.Allreduce(MPI.IN_PLACE, param.grad.data.numpy(), op=MPI.SUM)
param.grad.data=torch.from_numpy(param.grad.data.numpy()/size)

if rank == 0:
print(f"Epoch {epoch+1}, Loss: {loss.item()}")

Synchronize final model parameters
for param in model.parameters():

comm.Bcast(param.data.numpy(), root=0)

if rank == 0:
print("Training complete")

35 / 45

Introduction to
GPU Computing

and CUDA

Chik Him (Ricky)
Wong

GraCCA

AMReX

Lattice QCD

Parton Shower
Simulations

Neural Network

Neural Network
Applications

Conclusion

Machine Learning in HEP ResearchMachine Learning in HEP Research

S. Gleyzer et al, 1807.02876v3 W.-B. He et al, Nuclear Science and Techniques (2023) 34:88

Theoretical:
Simulation:
ML techniques are employed to improve the accuracy and efficiency
of simulations and SM calculations such as matrix elements
Object Reconstruction, Identification, and Calibration:
ML methods enhance the reconstruction and identification of
particles and events, as well as the calibration of detectors

36 / 45

Introduction to
GPU Computing

and CUDA

Chik Him (Ricky)
Wong

GraCCA

AMReX

Lattice QCD

Parton Shower
Simulations

Neural Network

Neural Network
Applications

Conclusion

Machine Learning in HEP ResearchMachine Learning in HEP Research

Theoretical:
End-To-End Deep Learning:
Potential of deep learning approaches to streamline the entire data
processing pipeline, from raw data to physics analysis.
Theoretical Applications:
ML is applied to improve model building and hypothesis testing.

37 / 45

Introduction to
GPU Computing

and CUDA

Chik Him (Ricky)
Wong

GraCCA

AMReX

Lattice QCD

Parton Shower
Simulations

Neural Network

Neural Network
Applications

Conclusion

Machine Learning in HEP ResearchMachine Learning in HEP Research

Experimental:
Real-Time Analysis and Triggering:
Integration of ML for real-time data analysis and event triggering is
crucial for handling the large volumes of data generated by particle
collisions.
Uncertainty Assignment:
ML plays a role in quantifying uncertainties in measurements and
predictions, which is vital for the reliability of experimental results.

38 / 45

Introduction to
GPU Computing

and CUDA

Chik Him (Ricky)
Wong

GraCCA

AMReX

Lattice QCD

Parton Shower
Simulations

Neural Network

Neural Network
Applications

Conclusion

Machine Learning in HEP ResearchMachine Learning in HEP Research

Experimental:
Monitoring of Detectors and Maintenance:
ML is used for monitoring detector performance, identifying
hardware anomalies, and facilitating preemptive maintenance.
Computing Resource Optimization:
The chapter emphasizes the importance of optimizing computing
resources and managing workflows to handle the increasing data
demands in HEP.

39 / 45

Introduction to
GPU Computing

and CUDA

Chik Him (Ricky)
Wong

GraCCA

AMReX

Lattice QCD

Parton Shower
Simulations

Neural Network

Neural Network
Applications

Conclusion

Machine Learning in Nuclear astrophysicsMachine Learning in Nuclear astrophysics

Nuclear astrophysics
Nuclear Mass Predictions
[e.g. Liquid Drop Model computation: X.-K. Le, Nuclear Physics A Volume 1038 (2023) 122707]

Equation of State Reconstruction for Neutron Star
[e.g. F. Morawski et al, Astronomy&Astrophysics 642, A78 (2020)]

Nuclear Reactions in Astrophysical Simulations
[e.g. MAESTROeX, in later slides]

Nuclear Charge Radii Predictions
[e.g. S Akkoyun et al, J. Phys. G: Nucl. Part. Phys. 40 (2013) 055106]

R-Process Nucleosynthesis

Potential energy and collective inertia can be obtained by expensive
Nuclear Density Functional Theory (DFT)
⇒ Use NN to emulate instead [e.g. D. Lay et al, Phys. Rev. C 109, 044305 (2024)]

40 / 45

Introduction to
GPU Computing

and CUDA

Chik Him (Ricky)
Wong

GraCCA

AMReX

Lattice QCD

Parton Shower
Simulations

Neural Network

Neural Network
Applications

Conclusion

Machine Learning in
Graviational Wave studies

Machine Learning in
Graviational Wave studies

Graviational wave studies
Real-time Detection and Classification of Gravitational Wave signals

[e.g. R. Qiu et al, Physics Letters B Volume 840 (2023) 137850]

Alignment sensing and Control of Detectors
[e.g. N. Mukund et al, Physical Review Applied 20 (6), 064041 (2023)]

Continuous gravitational waves (CWs) are weak, longlasting and
nearly-monochromatic waves emitted by nonaxisymmetric spinning
neutron stars. Cheap DNN can be applied as a filter for expensive
searches to increase sensitivity for the expected weak CWs signals.
[e.g. A. L. Miller et al, Phys. Rev. D 100, 062005]

41 / 45

Introduction to
GPU Computing

and CUDA

Chik Him (Ricky)
Wong

GraCCA

AMReX

Lattice QCD

Parton Shower
Simulations

Neural Network

Neural Network
Applications

Conclusion

Neural Networks in MAESTROeXNeural Networks in MAESTROeX

D. Fan et al, AstroPhysics Journal 887 212 (2019)

D. Fan et al, AstroPhysics Journal 940 134 (2022)

MAESTROeX: Used for low Mach number astrophysics
simulations, based on AMReX
Suitable for modeling spherical stars as well as planar simulations
of dynamics within localized regions of a star

42 / 45

Introduction to
GPU Computing

and CUDA

Chik Him (Ricky)
Wong

GraCCA

AMReX

Lattice QCD

Parton Shower
Simulations

Neural Network

Neural Network
Applications

Conclusion

Neural Networks in MAESTROeXNeural Networks in MAESTROeX

D. Fan et al, AstroPhysics Journal 887 212 (2019)

D. Fan et al, AstroPhysics Journal 940 134 (2022)

Accelerate reaction steps in MAESTROeX by replacing stiff ODE
integrator (VODE) with trained neural networks
Inputs: density, temperature, mass fractions
Outputs: updated mass fractions, nuclear energy generation
Trained on standard MAESTROeX simulation data

43 / 45

Introduction to
GPU Computing

and CUDA

Chik Him (Ricky)
Wong

GraCCA

AMReX

Lattice QCD

Parton Shower
Simulations

Neural Network

Neural Network
Applications

Conclusion

Machine Learning and Lattice QCDMachine Learning and Lattice QCD
M. S. Albergo et al, Phys. Rev. D 100, 034515 (2019),

https://siboehm.com/articles/19/normalizing-flow-network

Normalizing Flow:
Replace HMC with Generative AI for gauge generation

Eliminates auto-correlations that persists for observables with long
correlation length, e.g. topological charge
Uses Neural Network architectures to mimic actions that are very
expensive/difficult to simulate

44 / 45

Introduction to
GPU Computing

and CUDA

Chik Him (Ricky)
Wong

GraCCA

AMReX

Lattice QCD

Parton Shower
Simulations

Neural Network

Neural Network
Applications

Conclusion

ConclusionConclusion

Part 1: GPU computing
What is GPU?
GPU Architecture
CUDA basics
Performance and Optimization

Part 2: GPU Applications in HEP Research
Nuclear Astrophysics:

GraCCA: GPU-accelerated N-body simulations
AMReX : framework for AMR

Nuclear Physics:
Lattice QCD
Parton Shower calculation

Neural Network applications

45 / 45

	GraCCA
	AMReX
	Lattice QCD
	Parton Shower Simulations
	Neural Network
	Neural Network Applications
	Conclusion

