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Part 1: GPU computing
What is GPU?
GPU Architecture
CUDA basics
Performance and Optimization

Part 2: GPU Applications
Neural Networks
Astrophysics :

N-body simulation
Adaptive Mesh Refinement framework

Nuclear physics :
Lattice QCD
Parton shower simulation
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What is a GPU?What is a GPU?

GPU: Graphics Processing Unit
Originally designed for rendering graphics
Now used for general-purpose computing (GPGPU)
Highly efficient for parallel computations
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Applications of GPU ComputingApplications of GPU Computing

GPU has been widely applied in Research, way before the hype of
Neural Networks
All researches that utilize supercomputing involve:

Solving Differential Equations numerically on a field
⇒ Discretization of differentiations on fields translates into Matrix
operations on high-dimensional domains
Statistical analysis of Huge datasets

Both of these tasks are highly parallelizable
GPU is highly optimized for massively parallelized compuations on
huge datasets
⇒ If parallelizable in CPUs, GPUs can do better
In the era of Machine learning and Neural Networks

Both simulations and data analysis accelerate due to algorithmic
advancement
GPUs, being the most efficient hardware for Neural Network
implementation, become very popular
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Applications of GPU ComputingApplications of GPU Computing

Popular applications include:
Computer graphics and
visualization
Deep learning and machine
learning
Scientific Computing
(simulations, data analysis)

Applied in 9 of the top 10
fastest facilities
Applied in all of the top 10
most energy efficient facilities

https://www.top500.org/
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Applications of GPU ComputingApplications of GPU Computing

Large-scale simulation entirely on GPUs is too expensive ⇒
Hybrid setup with GPUs as Accelerators :

GPU : Critical, Expensive, Parallelizable computations
CPU : Simple, Cheap, Non-parallelizable computations

CPU GPU
Number of cores 4-64 O(103)

Control logics Complex Simple
Cache size Large Small

Optimal processings Serial Parallel
Languages / API Fortran, CUDA (NVIDIA),

C, C++, OpenCL (Cross-platform),
OpenMP, MPI, DirectCompute (Microsoft),

Python, OpenACC (Directive-based),
Matlab · · · ROCm (AMD) · · ·

CPU parallelizations (e.g. OpenMP or MPI) are combined with
GPU parallelization
CUDA: Compute Unified Device Architecture, a parallel
computing platform and API model created by NVIDIA
Terminologies used in this talk are based on CUDA
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Types of ParallelismTypes of Parallelism

Data Parallelism: (Most common)
Single Instruction Multiple Data (SIMD)
Example: matrix multiplication on a vector field (Lattice QCD)
GPU: Single Instruction Multiple Thread (SIMT), each thread
handles different data

Task Parallelism:
Multiple Instruction Multiple Data (MIMD)
Example: Evolution of particle-plasma systems
GPU architecture is not optimal for this, although possible via CUDA
streams

Hybrid Parallelism:
Parallelization in data and task
Example: Evolution of Domain-decomposed systems
Can leverage both CPU and GPU effectively:
GPUs handle critical tasks and CPUs handle cheap tasks concurrently
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GPU Architecture: Basic ComponentsGPU Architecture: Basic Components

Architecture:
Streaming Multiprocessors
(SMs)
Stream Processor (SP) Cores
Warp Schedulers
Memory Hierarchy:
Global Memory, Shared
Memory, Registers, L1 and
L2 Cache etc

API:
Host: CPU , Device: GPU
Kernel: Functions executed
on GPU
Multiple Kernel calls
possible, simultaneously or
not
Thread < Warp < Block <
Grid

Moises Hernandez et al, 2013

https://doi.org/10.1371/journal.pone.0061892.g001
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Streaming Multiprocessors (SMs)Streaming Multiprocessors (SMs)

Building blocks of GPU
Contains multiple CUDA cores
Manages thread execution
Includes warp schedulers,
register file, shared memory
Number of SMs varies by GPU
model
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CUDA CoresCUDA Cores

Basic computational units in
GPU
Executes floating-point and
integer operations
Thousands of CUDA cores in
modern GPUs
Organized into groups within
SMs
Operate in SIMT (Single
Instruction, Multiple Thread)
fashion
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Memory Hierarchy in GPUsMemory Hierarchy in GPUs

Global Memory: Large, high
latency, accessible by all
threads
Shared Memory: Fast, limited
size, shared within a thread
block
Registers: Fastest, very
limited, per-thread storage
L1 and L2 Cache: Automatic
caching for global memory
accesses
Constant Memory: Read-only,
cached, for constant data
Texture Memory: Optimized
for 2D spatial locality
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Thread HierarchyThread Hierarchy

Thread:
Smallest unit of execution
Warp:

Group of 32 threads,
executed simultaneously
SIMT (Single Instruction,
Multiple Thread) model
Divergence within a warp
can impact performance
Warp scheduling is
hardware-managed

Thread Block:
Group of threads that can
cooperate
Grid:
Array of thread blocks
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Kernel FunctionsKernel Functions

Functions executed on GPU,
either called by Host or Device
The amount of shared memory,
number of Grids, Blocks and
Threads used are specified
Memory is not shared between
CPU and GPU
⇒ Frequently used data stored
on GPU if possible
Expensive CPU-GPU and
GPU-GPU communications
⇒ Synchronization with CPU
and other Kernels are crucial in
optimization
Kernels can be launched into
seperate streams as a simple
optimization mechanism
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Programming in CUDAProgramming in CUDA

CUDA: Compute Unified Device Architecture
Parallel computing platform and API model created by NVIDIA
Allows software developers to use NVIDIA GPUs for general
purpose processing
Extends C, C++, and Fortran
CUDA Installation and Setup:

Download CUDA Toolkit from NVIDIA website
Includes compiler, libraries, and development tools
Supports Windows, Linux, and macOS (limited)

CUDA Toolkit Components:
NVIDIA CUDA Compiler (NVCC)
CUDA Runtime and Driver APIs
CUDA Libraries (cuBLAS, cuFFT, etc.)
CUDA Profiler and Debugger
GPU-Accelerated Libraries
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Installation and CompilationInstallation and Compilation

Configure IDE for CUDA development
Set up environment variables (PATH, CUDA_PATH)
Install GPU drivers
Check GPU information with nvidia-smi
Compile CUDA programs with nvcc
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CUDA InitializationCUDA Initialization
#include <cuda_runtime.h>
#include <stdio.h>

int main() {
int deviceCount = 0;
cudaError_t error_id = cudaGetDeviceCount(&deviceCount);

if (error_id != cudaSuccess) {
cout << "cudaGetDeviceCount returned " << (int)error_id

<< "-> " << cudaGetErrorString(error_id) << endl;
cout << "Result = FAIL" << endl; return 1;

}
if (deviceCount == 0) {

cout << "There are no available device(s)
that support CUDA" << endl;

} else {
cout << "Detected " << deviceCount

<< " CUDA Capable device(s)" << endl;
}

int dev = 0; cudaSetDevice(dev);
cudaDeviceProp deviceProp;
cudaGetDeviceProperties(&deviceProp, dev);
cout << "Device " << dev << ":" << deviceProp.name << endl;
cout << "CUDA Capability Major/Minor version number: "
<< deviceProp.major << "." << deviceProp.minor << endl;
...
return 0;

}
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CUDA code structureCUDA code structure

__global__
void daxpy(double a, double* x, double* y, int N){

int i=blockDim.x*blockIdx.x+threadIdx.x;
if (i<N) y[i] = a*x[i]+y[i];

}
/* within Host code */
/* a, x_host, y_host and N are defined on Host */
...

cudaMalloc(&x, sizeof(double)*N);
cudaMalloc(&y, sizeof(double)*N);
cudaMemcpy(x, x_host,sizeof(double)*N, cudaMemcpyHostToDevice);

/* GridShape, BlockShape and SharedMem are user-defined on Host */

daxpy<<<GridShape, BlockShape, SharedMem>>>(a, x, y, N);
cudaDeviceSynchronize();

cudaMemcpy(y_host, y,sizeof(double)*N, cudaMemcpyDeviceToHost);
...
cudaFree(x);
cudaFree(y);

Host code, Kernel functions,
Memory allocation, deallocation and transfer 17 / 40
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Kernel FunctionsKernel Functions

__global__
void daxpy(double a, double* x, double* y, int N){

int i=blockDim.x*blockIdx.x+threadIdx.x;
if (i<N) y[i]= a*x[i]+y[i];

}

Keywords:
__global__ :
Defined both on Host and Device (called from Host code)
__device__ :
Defined only on Device (Host code cannot call)
Executed on the GPU
Predefined variables:

Data Type : dim3, CUDA-defined 3-D array of unsigned integers
0,1,2-th Elements are accessed as .x,.y,.z
gridDim, blockDim:
Total numbers of blocks and threads per block
blockIdx, threadIdx:
Indices of executing block and thread

All threads execute the same instructions (SIMT)
18 / 40
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Kernel FunctionsKernel Functions
/* GridShape, BlockShape and SharedMem are user-defined on Host */

daxpy<<<GridShape, BlockShape, SharedMem>>>(a, x, y, N);
cudaDeviceSynchronize();

func«< GridShape, BlockShape, SharedMem »>(args)

GridShape: Total number of blocks requested
(Defines gridDim within kernel)
BlockShape: Total number of threads per block requested
( Defines blockDim within kernel)
SharedMem: Shared memory per block in bytes requested
The shapes are also of type dim3. The effects of sizes is usually
much more than the shapes. The latter should be determined by
optimizing memory access pattern.
cudaDeviceSynchronize();:
Synchronize the Device and Host to ensure that all data on Device
is up-to-date before next usage.
Kernels do NOT run consecutively in predefined order
⇒ It is critical to synchronize between kernels if order is needed
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Memory Allocation and Deallocation in
CUDA

Memory Allocation and Deallocation in
CUDA

cudaMalloc(&x, sizeof(double)*N); cudaMalloc(&y, sizeof(double)*N);
cudaMemcpy(x, x_host,sizeof(double)*N, cudaMemcpyHostToDevice);
cudaMemcpy(y_host, y,sizeof(double)*N, cudaMemcpyDeviceToHost);
...
cudaFree(x); cudaFree(y);

Host memory: malloc(), free()
Pinned Host memory:
cudaMallocHost(), cudaFreeHost()
Device memory: cudaMalloc(), cudaFree()
Unified memory: cudaMallocManaged(),cudaFree()
Data migrations between CPU and GPU are handled internally by
CUDA instead of programmer.

Convenient for quick deployments
Lose control of fine-tuning ⇒ Inconvenient for optimization

Data is transferred using cudaMemcpy()
Transfer direction is specified:
cudaMemcpyHostToDevice, cudaMemcpyDeviceToHost
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Asynchronous Data TransferAsynchronous Data Transfer
cudaHostAlloc(&x_host, sizeof(double)*N);
cudaHostAlloc(&y_host, sizeof(double)*N);
...
cudaMalloc(&x, sizeof(double)*N); cudaMalloc(&y, sizeof(double)*N);
cudaMemcpyAsync(x, x_host,sizeof(double)*N, cudaMemcpyHostToDevice);

/* do something useful on host */
...

cudaDeviceSynchronize();
...
cudaMemcpyAsync(y_host, y,sizeof(double)*N, cudaMemcpyDeviceToHost);

/* do something useful on host */
...

cudaDeviceSynchronize();
...
cudaFree(x); cudaFree(y);
...
cudaFreeHost(x_host); cudaFreeHost(y_host);

One can overlap Host computation with data transfer by
Asynchronous Data Transfer : cudaMemcpyAsync()
Requires pinned host memory allocated and deallocated with:
cudaHostAlloc(), cudaFreeHost()
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CUDA StreamsCUDA Streams

cudaStream_t Stream0, Stream1;
cudaStreamCreate(&Stream0);
cudaStreamCreate(&Stream1);
...
func0<<<GridShape0, BlockShape0, SharedMem0, Stream0>>>(args);
func1<<<GridShape1, BlockShape1, SharedMem1, Stream1>>>(args);
...
cudaStreamSynchronize(Stream0);
cudaStreamSynchronize(Stream1);
...
cudaStreamDestroy(Stream0);
cudaStreamDestroy(Stream1);

A stream is a sequence of Kernels running consecutively
Multiple streams can run concurrently
Create and destroy with
cudaStreamCreate(), cudaStreamDestroy()

22 / 40



Introduction to
GPU Computing

and CUDA

Chik Him (Ricky)
Wong

What is GPU?

GPU Architecture

CUDA Basics

Performance and
Optimization

Summary

CUDA EventCUDA Event

cudaStream_t Stream0, Stream1;
cudaStreamCreate(&Stream0);
cudaStreamCreate(&Stream1);
cudaEvent_t event;
...
cudaEventCreate(&event);
func0<<<GridShape0, BlockShape0, SharedMem0, Stream0>>>(args);
cudaEventRecord(event, stream0);
cudaStreamWaitEvent(stream1, event, 0);
func1<<<GridShape1, BlockShape1, SharedMem1, Stream1>>>(args);
...
cudaStreamSynchronize(Stream0);
cudaStreamSynchronize(Stream1);
...
cudaStreamDestroy(Stream0);
cudaStreamDestroy(Stream1);
cudaEventDestroy(event);

CPU-GPU or stream-stream synchronization can be achieved by
Event mechanism
Typically used for timing:
cudaEventElapsedTime() returns time difference between
two Events recorded at the start and the end
Create and destroy with
cudaEventCreate(), cudaEventDestroy()
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Error Handling in CUDAError Handling in CUDA

cudaError_t err = cudaGetLastError();
if (err != cudaSuccess) {

cout << "CUDA error:" << cudaGetErrorString(err) << endl;
}

Most CUDA bulit-in functions return cudaError_t
Check errors with cudaGetLastError()
Get error string with cudaGetErrorString()
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GPU Compute CapabilityGPU Compute Capability

Compute capability depends on:
Maximum threads per block
Shared memory size
Number of registers per thread
Support for advanced features (e.g., dynamic parallelism)

25 / 40
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Compiling and Running in CUDACompiling and Running in CUDA

Compiling CUDA Programs
Use NVCC compiler : nvcc -O3 myprogram.cu -o
myprogram
Specify compute capability: -arch=sm_XX
Example: nvcc -O3 -arch=sm_70 myprogram.cu -o
myprogram

Running CUDA Programs
Environment variables :
CUDA_VISIBLE_DEVICES, CUDA_PATH etc
Execute like a normal program: ./myprogram
Detect memory errors with cuda-memcheck
Profile with Nsight

26 / 40
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Beyond one GPUBeyond one GPU

In scientific applications, it is essential to run on more than one
GPU in parallel
Typically in super-computing facilities, these GPUs are arranged in
different nodes
GPU-GPU and GPU-CPU communication is crucial in
performance, especially across nodes (often the bottleneck)
Hardware solutions:

High-bandwidth PCIe:
New standards ( PCIe 4.0 or 5.0 ) improve CPU-GPU
communications
NVLink:
High-bandwidth, low-latency GPU-GPU interconnect by NVIDIA

Software solutions:
Workload distribution optimization: Minimize communications
CUDA-aware MPI:
extend MPI for CPU-initiated GPU-GPU communication
NVSHMEM:
NVidia implementation of OpenSHMEM, allowing GPU-initiated
GPU-GPU communications
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ScalingsScalings

Amdahl’s Law ( Strong scaling )
Describes how speedup from parallelization scales with requested
resources at given problem size
S(n) = 1

(1−p)+ p
n

, S: speedup, n: number of processors, p: parallelized
portion
Bad scaling ⇒ Parallellized portion becomes so fast that
non-parallelizable portion dominates the cost (e.g. communication
among processes too slow )

Gustafson’s Law ( Weak Scaling )
Describes how speedup scales at given proportion of requested
resources to problem size
S(n) = n−α(n−1), α: non-parallelizable portion
Bad Scaling ⇒ Non-paralellizable portion overwhelmingly
dominates (e.g. not enough parallelization) or actual available
resources cannot catch up with the requested (e.g. memory requested
exceeds available cache size )

A high-performing code should scale well weakly and strongly.
Strong scaling is harder to achieve typically due to slow GPU-GPU
and GPU-CPU communications
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Optimization TechniquesOptimization Techniques

Use nvcc flags to control resource usage
Optimal choice of kernel sizes:

Too large: unwanted overheads
Too small: underutilize resources

Occupancy
Ratio of active warps to maximum possible active warps
Higher occupancy can hide latency better
Affected by register usage, shared memory, block size

Combine kernels to minimize launching overheads
Use CUDA streams for concurrent execution
Optimize arithmetic operations (use intrinsics)

29 / 40
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Optimization TechniquesOptimization Techniques

Thread Divergence
Occurs when threads in a warp take different execution paths
Caused by conditional statements (if, switch, etc.)
Can severely impact performance
Minimize by restructuring code or data

Minimize data transfers and Overlap computation with data
transfers
Use asynchronous memory operations if possible
Implement pipeline parallelism where applicable
Maximize arithmetic density (computation per memory accesses)
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Optimization TechniquesOptimization Techniques

Use appropriate data types (e.g., float vs. double)
Balance use of registers, shared memory, and threads
Avoid using Unified Memory that limits low-level optimizations
Use Shared Memory within kernels for data reuse
Use Pinned Memory (cudaMallocHost()) for faster transfers:

Pinned Memory is locked in a physical address in RAM, allowing
direct access by devices like GPU without intermediate copies
It allows Direct Memory Access(DMA) transfers between host and
GPU without CPU intervention

Aim at contiguous and aligned memory accesses
Ensure coalesced memory access :
Threads within a warp should access nearby memory locations so
that they can be combined into single transaction
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CUDA Profiling ToolsCUDA Profiling Tools

48 

Nsight Product Family

Nsight Systems - 
Analyze application 
algorithm system-wide

Nsight Compute - 
Debug/optimize CUDA 
kernel

Nsight Graphics - 
Debug/optimize graphics 
workloads

Workflow

Holly Wilper, 2020 https://www.olcf.ornl.gov/wp-content/uploads/2020/02/Summit-Nsight-Systems-Introduction.pdf
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Identifying Performance BottlenecksIdentifying Performance Bottlenecks

43 

GPU idle and low utilization level of detail
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Identifying Performance BottlenecksIdentifying Performance Bottlenecks

44 

Fusion opportunities
CPU launch cost + small GPU work size ≈ GPU sparse idle

This can apply to DNN nodes/layers
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Identifying Performance BottlenecksIdentifying Performance Bottlenecks

45 

cudaMemcpyAsync behaving synchronous
Device to host pageable memory

Mitigate with pinned memory

~150us

~1.2us
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Identifying Performance BottlenecksIdentifying Performance Bottlenecks

46 

Example GPU idle caused by stream synchronization

36 / 40



Introduction to
GPU Computing

and CUDA

Chik Him (Ricky)
Wong

What is GPU?

GPU Architecture

CUDA Basics

Performance and
Optimization

Summary

Identifying Performance BottlenecksIdentifying Performance Bottlenecks

47 

OS Runtime API Trace

Example:Mask-RCNN

Map/unmap hiccups

Mitigate by pipelining

● Map 1 batch ahead
● Unmap last batch
● Swap pointers here instead
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General practicesGeneral practices

If porting existing codes into GPU, make sure there are unit tests to
check for correctness
Hybrid model (CPU+GPU) usually performs better than pure GPU
model
Start with the most computationally intensive parts
Use libraries for common operations, e.g. for CUDA:

cuBLAS: Basic Linear Algebra Subprograms
cuFFT: Fast Fourier Transforms
cuRAND: Random Number Generation
cuSPARSE: Sparse Matrix Operations
cuSOLVER: Dense and Sparse Direct Solvers

Implement proper error checking and validation
Profiling and optimization is essential to achieve good scalings
Documentation of optimization strategies
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Comparison of GPU Programming ModelsComparison of GPU Programming Models
Feature CUDA OpenCL OpenACC oneAPI HIP

Primary Vendor NVIDIA Khronos Group NVIDIA, PGI Intel AMD
Language Base C/C++ C C, C++, Fortran C++ (DPC++) C++

Portability NVIDIA only Cross-platform NVIDIA, x86 Intel, some x86 AMD, NVIDIA
Programming Model Explicit Explicit Directive-based SYCL-based Explicit

Ecosystem Extensive Broad Moderate Growing Growing
Compiler Support nvcc GCC, Clang, Intel, PGI, GCC, Cray Intel DPC++ HIP, nvcc

AMD, IBM, PGI
Memory Model Unified Separate Unified Unified Unified
Kernel Launch «< »> API calls Directives SYCL syntax hipLaunchKernel

Concept CUDA OpenCL HIP
Device int deviceId cl_device int deviceId
Queue cudaStream_t cl_command_queue hipStream_t
Event cudaEvent_t cl_event hipEvent_t

Memory void * cl_mem void *
Grid of threads grid NDRange grid

Subgroup of threads block work-group block
Thread thread work-item thread

Thread-index threadIdx.x get_local_id(0) hipThreadIdx_x
Block-index blockIdx.x get_group_id(0) hipBlockIdx_x
Block-dim blockDim.x get_local_size(0) hipBlockDim_x
Grid-dim gridDim.x get_global_size(0) hipGridDim_x

Device Kernel __global__ __kernel __global__
Device Function __device__ N/A (Implied) __device__
Host Function __host__ (default) N/A (Implied) __host__ (default)

Host + Device Function __host__ __device__ N/A __host__ __device__
Kernel Launch «< »> clEnqueueNDRangeKernel hipLaunchKernel
Global Memory __global__ __global __global__
Group Memory __shared__ __local __shared__

Constant Memory __constant__ __constant __constant__
Thread Synchronization __syncthreads barrier(CLK_LOCAL_MEMFENCE) __syncthreads

Atomic Builtins atomicAdd atomic_add atomicAdd
Precise Math cos(f) cos(f) cos(f)

Fast Math __cos(f) native_cos(f) __cos(f)
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SummarySummary

GPU is a very powerful accelerator in high performance computing
CUDA basics and parallelization stretagies are discussed
For efficient utilization of the computing power of GPUs, Profiling
and Optimization are crucial
Part 2: GPU Applications

Neural Networks
Astrophysics :

N-body simulation
Adaptive Mesh Refinement framework

Nuclear physics :
Lattice QCD
Parton shower simulation

40 / 40


	What is GPU?
	GPU Architecture
	CUDA Basics
	Performance and Optimization
	Summary

