

Constraining the Neutron Star EOS with quasiperiodic oscillations from short GRBs

Partner

NP3M Virtual Seminar - August 24 2023

Cecilia Chirenti

[Nature **613** 253 (2023)]

On behalf of co-authors: Simone Dichiara, Amy Lien, Cole Miller and Rob Preece

Binary neutron star merger

Between the "whoop" and the "ding"...

 $\rightarrow \mathbf{GWs}$ whoop!

When is the GRB launched?

... a hypermassive neutron star?

HMNS

neutron stars

From simulations:

heavier 20% more mass than the heaviest known pulsar: J0740+6620

An HMNS can be heavier than a normal NS because of its fast spin!

black hole

HMNS lives for < 1s, spins fast, jiggles and emits kHz GWs too high for current GW detectors!

bigger 2 times the size of a typical NS

Differential rotation

HMNS

Kastaun, Ciolfi & Giacomazzo, 2018

Periodic signal single frequency

astrophysical example: pulsars

Periodic signal single frequency

astrophysical example: pulsars

Quasi-periodic signal not a single frequency

causes of quasi-periodicity: many close frequencies, dissipation or time variation

Examples of quasi-periodic oscillations

black hole X-ray binary XTE J1550-564

Motta et al. 2018

X-ray tail of SGR 1806-20 giant flare

Miller, Chirenti & Strohmayer 2019

HMNS Quasi-periodic oscillations

HMNS signal:

short-lived time-evolving dissipative*

quasi-periodic oscillations (QPOs)

*simulations also have numerical dissipation!

Takami, Rezzolla & Baiotti, 2014

Could the GRB show these QPOs?

Takami, Rezzolla & Baiotti, 2015

How does the HMNS oscillate?

How (and when) could the oscillations transmitted to the GRB?

Nedora et al. 2019

Stergioulas et al. 2011

adapted from Lorimer & Kramer, 2004

What we are looking for:

Oscillations that

*last for approx 100 ms (lifetime of an HMNS)
*have frequencies in the range 500 - 5,000 Hz

How: Bayesian model comparison

Model 0: White noise only

Model 1: White noise + QPO

We analyze each burst divided into short segments and quote the Bayes factor in favor of the noise + QPO model for each segment

 $n_{\sigma} = \frac{1}{2} I a_{\rm osc} \sqrt{\frac{\Delta t}{\Delta f}}$

half-overlapping segments (approx 100 ms)

total burst duration

Initial analyses: Lessons learned

Causes of fake QPOs

Cosmic rays

Detector artifacts*

(Data corruption)

Red noise contamination

*https://swift.gsfc.nasa.gov/analysis/ bat_digest.html#spurious-signal

Opening the treasure trove

More than 700 short GRBs analyzed

Each GRB split in smaller segments for analysis

Nothing pops up in Fermi or Swift data

Something in the BATSE data? Let's look more closely.

CGRO transforms GRB science

Launched in 1991 De-orbited in 2000

Compton Gamma-Ray Observatory was one of NASA's Great Observatories

Opening the treasure trove

... and **bang**! Two signals. The combined false positive rate is 1 in 3.3 million!

Both signals have: 2 QPOs each with similar frequencies and good agreement with simulations

Light curves and power spectra

BATSE GRB distribution

How special are these bursts?

False positive estimate I

False positive estimate II

False positive estimate III

GRB	Trigger #	$T_{90} (ms)$	Counts	$\operatorname{Prob}(\Delta \ln \mathcal{L}_0^2 > 56.4)$	$\operatorname{Prob}(\Delta \ln \mathcal{L}_0^2 > 33.3)$
910711 910508 931101B 910625 910703 940621C 930113C	$512 \\ 207 \\ 2615 \\ 432 \\ 480 \\ 3037 \\ 2132$	$14\\ 30\\ 34\\ 50\\ 62\\ 66\\ 90$	$1790 \\ 1254 \\ 524 \\ 1810 \\ 2278 \\ 710 \\ 612$	$\begin{array}{c} 5.9\times10^{-5}\\ 2.2\times10^{-6}\\ 2.6\times10^{-6}\\ 7.2\times10^{-7}\\ 1.8\times10^{-7}\\ 2.0\times10^{-10}\\ 4.1\times10^{-11} \end{array}$	$\begin{array}{c} 9.2\times 10^{-3}\\ 1.6\times 10^{-3}\\ 1.3\times 10^{-3}\\ 9.3\times 10^{-4}\\ 7.5\times 10^{-4}\\ 7.9\times 10^{-6}\\ 2.9\times 10^{-6}\end{array}$

The combined false positive probability is $\sim 3 \times 10^{-7}$

https://www.youtube.com/watch?v=IMcU2m5YbFE

A record-breaking neutron star

These signals are consistent with an HMNS:

QPO 1 High frequency! $\sim 1 \text{kHz}$ $(((\bullet))) \qquad \text{QPO 2 Higher frequency!}$ $\sim 2.6 \text{ kHz, higher amplitude}$ info on NS composition

Compared with other NSs, the HMNS is:

faster than the blink of an eye: signals last for only 10 millisecs

Learning about the neutron star equation of state

$QPO_{S} + NR$

adapted from Lioutas et al., 2021

adapted from Reddy, 2021

From gamma rays to radio?

Where do we look? **R**.A.: 209.9° Dec: -16.4° Error: 9.3°

(for GRB 910711)

Sarin et al. 2022

"Challenge accepted!" - radioastronomer

Past and Future

"Why BATSE"?

	BATSE	BAT 2	GBM	AMEGO-X	COSI
Effective area (cm ²)	2,000	I,400	240	I,200	256 (physical area)
Timing (microsec)	2	IOO	2	IO	3

Future missions:

Simulated Gravitational Waves

Between the *whoop* and the *ding* of a binary NS merger, an HMNS can be formed. We looked for them and found two: GRB 910711 and GRB 931101B.

Detected Gamma-ray QPOs

> Future gravitational wave detectors (2030s) will be sensitive to these kHz frequencies too! In the meantime, we'll be looking for them with gamma rays.

•

Cecilia Chirenti University of Maryland Department of Astronomy <u>chirenti@umd.edu</u>

