It is useful to be able to convert derivative operators between the
various sets of composition variables. In the relations below, we omit
the “bars” and simply write \(n_n,n_p\) for
\(\bar{n}_n,\bar{n}_p\). In other words, all of the nucleon
densities below are presumed to include nucleons both inside and
outside of nuclei.
Converting between (nn,np) and (nB,ne)
Since \(n_p=n_e\) and \(n_n=n_B-n_e\),
\[\begin{split}\left(\frac{\partial }{\partial n_B}\right)_{n_e} &=&
\left(\frac{\partial n_n}{\partial n_B}\right)_{n_e}
\left(\frac{\partial }{\partial n_n}\right)_{n_p} +
\left(\frac{\partial n_p}{\partial n_B}\right)_{n_e}
\left(\frac{\partial }{\partial n_p}\right)_{n_n} =
\left(\frac{\partial }{\partial n_n}\right)_{n_p}
\nonumber \\
\left(\frac{\partial }{\partial n_e}\right)_{n_B} &=&
\left(\frac{\partial n_n}{\partial n_e}\right)_{n_B}
\left(\frac{\partial }{\partial n_n}\right)_{n_p} +
\left(\frac{\partial n_p}{\partial n_e}\right)_{n_B}
\left(\frac{\partial }{\partial n_p}\right)_{n_n} =
\left(\frac{\partial }{\partial n_p}\right)_{n_n} -
\left(\frac{\partial }{\partial n_n}\right)_{n_p}\end{split}\]
For second derivatives
\[\begin{split}\left(\frac{\partial^2 }{\partial n_B^2}\right)_{n_e} &=&
\left(\frac{\partial^2 }{\partial n_n^2}\right)_{n_p}
\nonumber \\
\left(\frac{\partial^2 }{\partial n_e\partial n_B}\right) &=&
\left(\frac{\partial^2 }{\partial n_p \partial n_n}\right) -
\left(\frac{\partial^2 }{\partial n_n^2}\right)_{n_p}
\nonumber \\
\left(\frac{\partial^2 }{\partial n_e^2}\right)_{n_B} &=&
\left(\frac{\partial^2 }{\partial n_p^2}\right)_{n_n} -
2\left(\frac{\partial^2 }{\partial n_p \partial n_n}\right) +
\left(\frac{\partial^2 }{\partial n_n^2}\right)_{n_p}\end{split}\]
Converting between (nn,np) and (nB,Ye)
Since \(n_p=n_B Y_e\) and \(n_n=n_B(1-Y_e)\),
\[\begin{split}\left(\frac{\partial }{\partial n_B}\right)_{Y_e} &=&
\left(\frac{\partial n_n}{\partial n_B}\right)_{Y_e}
\left(\frac{\partial }{\partial n_n}\right)_{n_p} +
\left(\frac{\partial n_p}{\partial n_B}\right)_{Y_e}
\left(\frac{\partial }{\partial n_p}\right)_{n_n} =
(1-Y_e) \left(\frac{\partial }{\partial n_n}\right)_{n_p} +
Y_e \left(\frac{\partial }{\partial n_p}\right)_{n_n}
\nonumber \\
\left(\frac{\partial }{\partial Y_e}\right)_{n_B} &=&
\left(\frac{\partial n_n}{\partial Y_e}\right)_{n_B}
\left(\frac{\partial }{\partial n_n}\right)_{n_p} +
\left(\frac{\partial n_p}{\partial Y_e}\right)_{n_B}
\left(\frac{\partial }{\partial n_p}\right)_{n_n} =
n_B \left[\left(\frac{\partial }{\partial n_p}\right)_{n_n} -
\left(\frac{\partial }{\partial n_n}\right)_{n_p} \right]\end{split}\]
The inverse transformation is:
\[\begin{split}\left(\frac{\partial }{\partial n_n}\right)_{n_p} =
\left(\frac{\partial }{\partial n_B}\right)_{Y_e}
- \frac{Y_e}{n_B}
\left(\frac{\partial }{\partial Y_e}\right)_{n_B}
\nonumber \\
\left(\frac{\partial }{\partial n_p}\right)_{n_n} =
\left(\frac{\partial }{\partial n_B}\right)_{Y_e}
+ \frac{(1-Y_e)}{n_B}
\left(\frac{\partial }{\partial Y_e}\right)_{n_B}\end{split}\]
This transformation is used in stability()
in eos_nuclei.cpp
.
There is a Maxwell relation:
\[\frac{\partial f^2}{\partial n_n \partial n_p} =
\frac{\partial f^2}{\partial n_p \partial n_n}\]
which implies
\[\left(\frac{\partial \mu_n}{\partial n_p}\right) =
\left(\frac{\partial \mu_p}{\partial n_n}\right)
\left(\frac{\partial \mu_e}{\partial n_n}\right)\]
or
\[\left(\frac{\partial \mu_p}{\partial n_B}\right)_{Y_e}
- \frac{Y_e}{n_B}
\left(\frac{\partial \mu_p}{\partial Y_e}\right)_{n_B}
=
\left(\frac{\partial \mu_n}{\partial n_B}\right)_{Y_e}
+ \frac{(1-Y_e)}{n_B}
\left(\frac{\partial \mu_n}{\partial Y_e}\right)_{n_B}\]
thus
\[\left(\frac{\partial \mu_p}{\partial n_B}\right)_{Y_e}
=
\frac{Y_e}{n_B}
\left(\frac{\partial \mu_p}{\partial Y_e}\right)_{n_B}
+ \left(\frac{\partial \mu_n}{\partial n_B}\right)_{Y_e}
+ \frac{(1-Y_e)}{n_B}
\left(\frac{\partial \mu_n}{\partial Y_e}\right)_{n_B}\]
This equality is also used in stability()
in eos_nuclei.cpp
.
Converting between (nn,np) and (nB,Ye) with muons
When muons are included, the expressions change, since \(n_p =
n_e + n_{\mu}(n_e)\) and \(n_n = n_B - n_e - n_{\mu}(n_e)\),
\[\begin{split}\left(\frac{\partial }{\partial n_B}\right)_{n_e} &=&
\left(\frac{\partial n_n}{\partial n_B}\right)_{n_e}
\left(\frac{\partial }{\partial n_n}\right)_{n_p} +
\left(\frac{\partial n_p}{\partial n_B}\right)_{n_e}
\left(\frac{\partial }{\partial n_p}\right)_{n_n} =
\left(\frac{\partial }{\partial n_n}\right)_{n_p}
\nonumber \\
\left(\frac{\partial }{\partial n_e}\right)_{n_B} &=&
\left(\frac{\partial n_n}{\partial n_e}\right)_{n_B}
\left(\frac{\partial }{\partial n_n}\right)_{n_p} +
\left(\frac{\partial n_p}{\partial n_e}\right)_{n_B}
\left(\frac{\partial }{\partial n_p}\right)_{n_n} =
(1+\chi) \left[
\left(\frac{\partial }{\partial n_p}\right)_{n_n} -
\left(\frac{\partial }{\partial n_n}\right)_{n_p}\right]\end{split}\]
where
\[\chi = \frac{\partial n_{\mu}}{\partial n_e} =
\frac{\partial n_{\mu}}{\partial {\mu}_{\mu}}
\frac{\partial {\mu}_{\mu}}{\partial {\mu}_e}
\frac{\partial {\mu}_{e}}{\partial n_e} +
\frac{\partial {\mu}_{e}}{\partial n_e} =
\frac{\partial n_{\mu}}{\partial {\mu}_{\mu}}
\left(\frac{\partial n_e}{\partial {\mu}_{e}}\right)^{-1}\]
For second derivatives
\[\begin{split}\left(\frac{\partial^2 }{\partial n_B^2}\right)_{n_e} &=&
\left(\frac{\partial^2 }{\partial n_n^2}\right)_{n_p}
\nonumber \\
\left(\frac{\partial^2 }{\partial n_e\partial n_B}\right) &=&
(1+\chi)\left[\left(\frac{\partial^2 }{\partial n_p \partial n_n}\right) -
\left(\frac{\partial^2 }{\partial n_n^2}\right)_{n_p}\right]
\nonumber \\
\left(\frac{\partial^2 }{\partial n_e^2}\right)_{n_B} &=&
\left(1+\chi\right)^2 \left[
\left(\frac{\partial^2 }{\partial n_p^2}\right)_{n_n} -
2\left(\frac{\partial^2 }{\partial n_p \partial n_n}\right) +
\left(\frac{\partial^2 }{\partial n_n^2}\right)_{n_p}\right]\end{split}\]